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Abstract: Because of the significant environmental pollution produced by human activities, there
is an ongoing need to develop transportable, simple, and reliable techniques for determining trace
contaminants on the spot. This work reported a colorimetric detection method for aqueous Cr(VI)
sensing by maleic acid-functionalized gold nanoparticles with high sensitivity and selectivity. The
wine-red color of the probe solution can change to gray even in the presence of 1.0 µg L−1 of aqueous
Cr(VI). Moreover, with the assistance of a smartphone installed with a commercially available color
scan application software, its concentration of could be readily quantified on the spot without the help
of UV-Vis spectrometer. The detection limit could reach as low as 0.1 µg L−1 with linear range from 0.2
to 2.0 µg L−1. Most importantly, the coefficient variation of the proposed smartphone-based method
was equivalent to that of colorimetry, demonstrating the high accuracy of the proposed method for
accurate detection of Cr(VI) in resource-constrained countries. Conclusively, with the help of the
smartphone, this nanomaterials-based probe demonstrated the potential in the field of environment
monitoring for on-site quantitative detection of any pollutants in resource-constrained countries.

Keywords: Chromium; colorimetric measurement; smartphone-based detection; gold nanoparticles

1. Introduction

As an important metal resource in the industrial community, Chromium generally
exists in the natural environment in two oxidation states, VI as in CrO4

2− and Cr2O7
2− [1–7].

While Cr(III) plays a vital role in maintaining normal life activities [2–5,7,8], Cr(VI) is
widely recognized as a highly toxic pollutant [2–4,6,7,9,10] with carcinogenic [2–5,7,8,11]
and mutagenic effects [4,5,7]. Cr(VI) can cause metabolic disorders and damage to the
kidney and other organs [5,10,12–16]. Fortunately, the existing methods, including atomic
absorption spectroscopy, [2–4,6–10,17–20], inductively coupled plasma-mass spectrome-
try [7,8,10,20,21] and inductively coupled plasma-optical emission spectrometry, [7,10,22,23],
could provide an extremely sensitive, selective and reliable way for the detection of Cr(III)
and Cr(VI) in real samples [7]. However, these methods usually involve tedious sample
preparation, expensive equipment use, and lab-based tests [2–4,6–11]. Therefore, there is
always an urgent demand for the development of mobile, simple and reliable methods for
rapid determination of trace Cr(VI) [2,3,8,11] and other pollutants.

Analytical methods employing Gold nanoparticles (Au NPs) include
colorimetry, [6,7,24–32], surface-enhanced Raman scattering (SERS) [33,34], and surface
plasmonic resonance (SPR) [7,35] offer improved performance compared to traditional
methods. Some of them have already been commercialized for practical application. For
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example, a portable device based on the SERS technique has been developed for on-site
detection of pesticides on the surface of fruits with high selectivity and sensitivity [33]. Au
NPs with rationally modified surfaces can be the base for colorimetric methods in which
elaborate instrumentation is replaced by the naked eye [7,20,24–32]. Furthermore, due to
their high extinction coefficient in the visible region, the Au NPs-based colorimetric method
can be used to detect heavy metal ions selectively and sensitively [7,20,25,32,36–42]. For
example, the Mirkin group has reported a highly selective probe for Hg2+ sensing, based on
the strong coordination interaction between Hg2+ and thymine-rich DNA-functionalized
Au NPs. [25] This method has a sensitivity of 20 ppb [25]. Recently, the Gao group de-
veloped a Pb2+ selective detection method using glutathione-modified Au NPs with a
detection limit of about 10 nM [38]. However, a UV-Vis spectrometer is needed for quantita-
tive colorimetric assays. The associated expense hampers practical use of the Au NPs-based
visual detection method.

The smartphone, very portable and capable of high-resolution imaging, is a natural
candidate for a powerful and convenient point-of-care analytical device. Specifically,
smartphone-based colorimetric methods for environmental monitoring of heavy metal
ions have been reported [2,11,43–53]. Herein, we describe an Au NPs-based colorimetric
method for the detection of aqueous Cr(VI). Our assay involves an aggregation-induced
color change of functionalized Au NPs in the presence of aqueous Cr(VI) (Figure 1). As
we will show, with a color scan application, the smartphone can easily uncover nuances of
color in solutions that the naked eye can not observe. Like the UV-Vis spectrophotometer a
smartphone can quantify Cr(VI) in aqueous solution. Its detection limit can be as low as
0.1 µg L−1.
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Figure 1. Color change of maleic acid-capped gold nanoparticles induced by Cr(VI).

2. Materials and Methods
2.1. Chemicals

Chloroauric acid hydrate (HAuCl4·4H2O) and sodium citrate were obtained from
Shanghai Reagent (analytical grade). Maleic acid (MA), various metal salts (Ba2+, Ca2+,
Cd2+, Co2+, Cu2+, Cr(III), Cr2O7

2−, Mg2+, Mn2+, Ni2+, Pb2+, Zn2+ and Al3+) were obtained
from Sinopharm Chemical Reagent. All chemicals used in the experiment were used as
received without further purification, and solutions were prepared using high purity water
purified through a Millipore system with a resistance of 18 MΩ cm−1. All glassware was
thoroughly cleaned with freshly prepared 3:1 HCl/HNO3 and rinsed with high purity
water before use.

2.2. Preparation and Functionalization of Au NPs

Au NPs were synthesized according to the classic citrate-mediated reduction method [54].
Briefly, 50 mL of water containing 1 mM of HAuCl4 was heated to a boil under vigorous
stirring, and 2 mL of 1% sodium citrate solution was then injected into boiling solution.
After another 20 min of reaction, the boiling solution was allowed to cool down to room
temperature under stirring. Finally, the obtained wine-red Au NPs colloid solution was
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stored at 4 ◦C for further use. For the functionalization, 1 mL of citrate-capped Au NPs was
mixed with C maleic acid (MA) under stirring, and the mixture was allowed to stir for 2 h
at room temperature under rotation. The MA-functionalized Au NPs were then purified
by centrifugation and the purified and functionalized Au NPs were then dissolved in 1 mL
of ultrapure water for storage as the probe solution. For storage more than 2 months, the
probe should be dispersed in 1 mL of DI water containing 0.1 mM maleic acid at 4 ◦C. The
concentration of obtained MA-capped Au NPs was determined by its absorption at 525 nm
with an extinction coefficient of 2.7 × 108 L·mol−1·cm−1.

2.3. Detection of Aqueous Cr(VI) by MA-Capped Au NPs

Briefly, 10 µL samples of Cr(VI) or other metal ion solutions including Ba2+, Ca2+,
Cd2+, Co2+, Cu2+, Cr(III), Mg2+, Mn2+, Ni2+, Pb2+, Zn2+, and Al3+ stock solution prepared
in water were added into 1 mL of MA-capped Au NPs and mixed thoroughly for 2 min by
a pipette. A UV-Vis spectrophotometer was then used to collect the absorption spectrum of
the solution. A smartphone equipped with color scan application software (ColorAssist
Ver. 2.4, 2020 from Apple Store) was used to take the MA-capped Au NPs solution photo
at room temperature. Typically, for photograph acquiring, the vial should be placed on a
white paper together with white background, and glare should be avoided by changing the
photographing direction. The camera should be parallel to the vial, and the distance can
be adjusted according to the square pattern displayed by the app software; one need not
adjust amount. The square pattern should just cover the whole transverse part of the vial.
For real sample detection by the smartphone-based colorimetric method, aqueous samples
collected from three local lakes (South Lake, Tangxun Lake, and Yezi Lake) were first
filtered by a 0.22 µm Super filter. Atomic Absorption Spectroscopy method was then used
to measure the absolute concentration of Cr(VI) in the three samples. As for smartphone
sensing, 10 µL of the sample was added to 1 mL of MA-capped Au NPs, and the mixture
was allowed to react for 2 min before photographing. Each measurement was done three
times, and the average was presented with its standard deviation.

2.4. Characterization

The aggregation response of Au NPs after interaction with Cr(VI) was obtained by
transmission electron microscopy (TEM, JEOL 2010, Tokyo, Japan) at an accelerating voltage
of 200 kV. The absorption spectra of the colloid before and after interaction with metal
ions were collected using a Shimadzu UV-2550 spectrometer (Shimadzu, Kyoto, Japan). A
Canon-350D digital camera (Canon, Tokyo, Japan) takes optical photographs.

3. Results
3.1. Selectivity and Sensitivity Investigation of MA-Capped Au NPs to Aqueous Cr(VI)

The molecules used for Au NPs modification to effect colorimetric assays for heavy
metal ions [7,32,55–57] all have carboxylic acid groups. Examples include 5,5-dithiobis(2-
nitrobenzoic acid), [55] 1,4-dithiothreitol [56] and 5-thio-(2-nitrobenzoic acid) [57] can be
used as the capping reagent for Cr(III) or Cr(VI) sensing. We used maleic acid (MA), another
organic acid containing two carboxylic groups, was then used as the capping reagent for
the functionalization of Au NPs. By incubating MA with citrate-prepared Au NPs for
2 h under rotation, MA-capped Au NPs could be obtained; MA at high concentration
displaces the citrate. We compared the absorption spectra and aggregation response for
Au NPs before and after MA functionalization, in the presence of a range of metal ions.
See Figure 2A–C. While the citrate-bearing Au NPs solution showed poor selectivity to
the metal ions, MA-treated Au NPs exhibited a highly selective response to Cr(VI) over
other metal ions tested. As can be seen in Figure 2C, Ba2+, Ca2+, Cd2+, Co2+, Cu2+, Cr(III),
Mg2+, Mn2+, Ni2+, Pb2+, Zn2+, and Al3+ can not cause a significant effect on the color of
MA-capped Au NPs solution, while an obvious color change could occur in the presence of
Cr(VI) at a concentration of 1.0 µg L−1. We further recorded the UV-Vis spectra response of
MA-capped Au NPs in the presence of different metal ions, which could further display the
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excellent selectivity of our probe for aqueous Cr(VI) (Figure 2D,E). Our probe selectivity
was found to be working well as well as the methods described by Kim et al., Xue et al.,
and Mao et al. [6,7,10]. Moreover, TEM images of MA-capped Au NPs in the presence
and absence of Cr(VI) further confirmed their aggregation phenomenon induced by Cr(VI)
(Figure 2F,G).
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Figure 2. UV-Vis absorption spectra of citrate- and maleic acid-capped Au NPs (A). Optical responses
of citrate-capped (B) and MA-capped (C) Au NPs to various metal ions, all the concentrations of
metal ions are 1.0 µg L−1. (D) UV-Vis spectra of MA-capped Au NPs in the presence of various metal
ions and the corresponding A 650/A525 responses for those metal ions (E). (F,G) are the TEM images
of MA-capped Au NPs in the absence and presence of 10 µg L−1 Cr(VI), respectively. Both of the
two-scale bars are 200 nm.

The selectivity of our probe to Cr(VI) could be ascribed to the hypothesis that Cr(VI),
existing in the form of Cr2O7

2−, could coordinate with the carboxyl group from maleic
acid through hydrogen bond in an energetically favorable manner. In addition, this dis-
crimination between Cr(VI) and Cr(III) could be ascribed to surface oxidation reaction
between maleic acid and Cr2O7

2− because of the strong oxidization ability of Cr2O7
2−.

Figure 3A,B show the evolution of color and absorbance spectra after adding 10 µL of dif-
ferent concentrations of aqueous Cr(VI) into MA-capped Au NPs. A change in color already
discernable by the naked eye is evident already at a concentration as low as 0.4 µg L−1 by
the naked eye. According to Figure 3B, the absorption intensity at 520 nm declines and the
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intensity at 650 nm grows as the concentration of Cr(VI) increases. Figure 3C shows plots
of the absorption intensity ratio A650/A520 against the concentration of aqueous Cr(VI).
Below about 2 µg L−1, the limit beyond which the response reaches saturation, the plot is
linear, described by the regression line (y = 0.40089 + 0.31557x) with a 0.94045 correlation
coefficient (inset).
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Cr(VI) and their corresponding UV-Vis spectra (B). (C) The dose-response curve for Cr(VI) detection
and the insert within is the linear calibration plot for Cr(VI) in the range of 0.2 to 2.0 µg L−1.

3.2. Smartphone-Based Colorimetric Assay

The expensive, delicate, and costly UV-Vis spectrometer is not appropriate for on-
site application. The portable, inexpensive, and sturdy smartphone is more suitable for
point-of-care sensors [2,11], especially in resource-constrained countries. Therefore, we
carried out the experiment assay with the help of a smartphone equipped with a color
scan application software (ColorAssist), specially designed for photo analysis instead of a
UV-Vis spectrometer. After taking, The software can analyze a photo of the MA-capped Au
NPs solution producing a color card and RGB (red, green, and blue) values. As we know,
colorimetry is a method that is used to determine the concentration of colored compound
in solution by the application of the Beer-Lambert law, which is highly dependent on
the use of UV-Vis spectrometer. Unlike colorimetry, RGB, as three primary of light, has
been widely used in the field of image display since any color could be decoded by RGB
value. The RGB components of light can represent any color, as shown in Figure 4. Small
differences in the color of solutions of MA-capped Au NPs with different concentration of
target could also be reflected by the ratio of green to red values displayed on the screen.
Figure 5 shows that the ratio of green to red can be used to establish a correlation with
Cr(VI) concentration. A linear calibration curve (y = 0.48297 + 0.49794x) was obtained and
showed good linearity with a correlation coefficient of 0.99036 in the concentration range
of 0.2 µg L−1 to 1 µg L−1. The detection limit could reach as low as 0.1 µg L−1 based on
the definition of three times the deviation of the blank signal (3 σ). Our detection limit
was found to be very near to the limitations which were reported by Yingying Qi et al.
(0.52 µg L−1), Xiaolan Chen et al. (0.26 µg L−1), and Kim et al. (0.4 µM) [2,7,32]. However,
our detection limit was found to be more reliable than the method reported by Sushant D.
Bamane et al. (1.3–11.6 µg L−1) [11].
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3.3. Real Sample Detection Based on Smartphone Sensor

Samples collected from three local lakes were used to investigate the performance
of our smartphone-based colorimetric method. The absolute concentrations of Cr(VI) in
the three samples were measured by the traditional Atomic Absorption Spectroscopy
(AAS) method. The samples were filtered through a 0.22 µm Super filter to remove any
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particulate suspension before the Cr(VI) determination. As revealed by the results in
Table 1, one can find that the concentrations of Cr(VI) in all the three lakes were in the
detection range of our MA-capped Au NPs sensor, suggesting the samples could be used
directly to interrogate the performance of our probe. As expected, the results obtained by
the smartphone were consistent with the data obtained by AAS, suggesting the impurities
within the samples did not cause serious interference for Cr(VI) detection in real samples
collected. Compared to the AAS results, the recovery rate of our smartphone-based method
for Cr(VI) detection was in the range of 84.9% to 115.8%. In addition, analytical precision
was compared by analyzing the coefficient variations for UV-Vis and the proposed method,
which revealed that the precision of smartphone-based assay was equivalent to that of
colorimetry, demonstrating the potential of the proposed method for accurate detection of
analyte in real world.

Table 1. Recovery test of Cr(VI) in a real water sample collected from three local lakes
by the smartphone-based method and its coefficient variation comparison with conventional
UV-Vis spectrometer a.

Sample b The Concentration of Cr(VI) (µg L−1)

AAS Method UV-Vis Method/CV Smartphone/CV

South lake 1.01 ± 0.03 0.95 ± 0.06/12.43% 1.08 ± 0.04/14.48%
Yezhi lake 0.91 ± 0.04 0.96 ± 0.02/13.67% 1.06 ± 0.03/14.52%

Tangxun lake 1.04 ± 0.04 1.00 ± 0.03/12.28% 0.88 ± 0.02/13.88%
a Values shown were the calculated mean Cr(VI) concentration for each sample and were determined from three
replicates. b all the sample were collected from the local lakes in Hongshan District of Wuhan city, China.

4. Conclusions

In this work, an MA-capped Au NPs based colorimetric method was developed for the
rapid detection of aqueous Cr(VI) with high sensitivity and selectivity. The response of our
probe to aqueous Cr(VI) could be simply observed with a color change from wine-red to
gray, and the limit of detection could reach as low as 0.4 µg L−1 by the naked eye. Moreover,
with the help of a smartphone equipped with a color scan application software, Cr(VI)
could be quantified on-site in a simple, portable, reliable, and rapid manner and detection
liner range from 0.2 to 1.0 µg L−1 with a detection limit as low as 0.1 µg L−1. The coefficient
variations obtained by the proposed method is comparable to that of conventional UV-
Vis spectrometer, demonstrating the potential of the proposed method in heavy metal
ion detection on site in resource-constrained countries. In the future, it is believed that
assays in decentralized studies could be dramatically improved if smartphone were to
be integrated with more powerful software for data collection. In addition, the proposed
method reported here could potentially be adapted for the detection of any environmental
pollutants as long as coordination reagents against it were available, therefore making
smartphone-based method a versatile tool for environmental monitoring. Furthermore,
this methodology is not confined to colorimetric assay, fluorescence-based assay combined
with smartphone seems to be more suitable for on-site detection in real world from the
perspective of detection sensitivity, which has been already intensely reported with high
accuracy and sensitivity in the past decade.
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